Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(3): 200, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459002

RESUMEN

During aging, muscle regenerative capacities decline, which is concomitant with the loss of satellite cells that enter in a state of irreversible senescence. However, what mechanisms are involved in myogenic senescence and differentiation are largely unknown. Here, we showed that early-passage or "young" C2C12 myoblasts activated the redox-sensitive p66Shc signaling pathway, exhibited a strong antioxidant protection and a bioenergetic profile relying predominantly on OXPHOS, responses that decrease progressively during differentiation. Furthermore, autophagy was increased in myotubes. Otherwise, late-passage or "senescent" myoblasts led to a highly metabolic profile, relying on both OXPHOS and glycolysis, that may be influenced by the loss of SQSTM1/p62 which tightly regulates the metabolic shift from aerobic glycolysis to OXPHOS. Furthermore, during differentiation of late-passage C2C12 cells, both p66Shc signaling and autophagy were impaired and this coincides with reduced myogenic capacity. Our findings recognized that the lack of p66Shc compromises the proliferation and the onset of the differentiation of C2C12 myoblasts. Moreover, the Atg7 silencing favored myoblasts growth, whereas interfered in the viability of differentiated myotubes. Then, our work demonstrates that the p66Shc signaling pathway, which highly influences cellular metabolic status and oxidative environment, is critical for the myogenic commitment and differentiation of C2C12 cells. Our findings also support that autophagy is essential for the metabolic switch observed during the differentiation of C2C12 myoblasts, confirming how its regulation determines cell fate. The regulatory roles of p66Shc and autophagy mechanisms on myogenesis require future attention as possible tools that could predict and measure the aging-related state of frailty and disability.


Asunto(s)
Mioblastos , Transducción de Señal , Autofagia/genética , Diferenciación Celular/fisiología , Línea Celular , Desarrollo de Músculos/genética , Mioblastos/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Ratones
2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338718

RESUMEN

Sarcopenia, a complex and debilitating condition characterized by progressive deterioration of skeletal muscle, is the primary cause of age-associated disability and significantly impacts healthspan in elderly patients. Despite its prevalence among the aging population, the underlying molecular mechanisms are still under investigation. The NLRP3 inflammasome is crucial in the innate immune response and has a significant impact on diseases related to inflammation and aging. Here, we investigated the expression of the NLRP3 inflammasome pathway and pro-inflammatory cytokines in skeletal muscle and peripheral blood of dependent and independent patients who underwent hip surgery. Patients were categorized into independent and dependent individuals based on their Barthel Index. The expression of NLRP3 inflammasome components was significantly upregulated in sarcopenic muscle from dependent patients, accompanied by higher levels of Caspase-1, IL-1ß and IL-6. Among older dependent individuals with sarcopenia, there was a significant increase in the MYH3/MYH2 ratio, indicating a transcriptional shift in expression from mature to developmental myosin isoforms. Creatine kinase levels and senescence markers were also higher in dependent patients, altogether resembling dystrophic diseases and indicating muscle degeneration. In summary, we present evidence for the involvement of the NLRP3/ASC/NEK7/Caspase-1 inflammasome pathway with activation of pro-inflammatory SASP in the outcome of sarcopenia in the elderly.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Sarcopenia , Humanos , Anciano , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Sarcopenia/etiología , Caspasa 1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Músculo Esquelético/metabolismo
3.
Antioxidants (Basel) ; 12(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38001801

RESUMEN

Schizophrenia (SCH) and bipolar disorder (BD) are two of the most important psychiatric pathologies due to their high population incidence and disabling power, but they also present, mainly in their debut, high clinical similarities that make their discrimination difficult. In this work, the differential oxidative stress, present in both disorders, is shown as a concatenator of the systemic alterations-both plasma and erythrocyte, and even at the level of peripheral blood mononuclear cells (PBMC)-in which, for the first time, the different affectations that both disorders cause at the level of the cellular interactome were observed. A marked erythrocyte antioxidant imbalance only present in SCH generalizes to oxidative damage at the plasma level and shows a clear impact on cellular involvement. From the alteration of protein synthesis to the induction of death by apoptosis, including proteasomal damage, mitochondrial imbalance, and autophagic alteration, all the data show a greater cellular affectation in SCH than in BD, which could be linked to increased oxidative stress. Thus, patients with SCH in our study show increased endoplasmic reticulum (ER)stress that induces increased proteasomal activity and a multifactorial response to misfolded proteins (UPR), which, together with altered mitochondrial activity, generating free radicals and leading to insufficient energy production, is associated with defective autophagy and ultimately leads the cell to a high apoptotic predisposition. In BD, however, oxidative damage is much milder and without significant activation of survival mechanisms or inhibition of apoptosis. These clear differences identified at the molecular and cellular level between the two disorders, resulting from progressive afflictions in which oxidative stress can be both a cause and a consequence, significantly improve the understanding of both disorders to date and are essential for the development of targeted and preventive treatments.

4.
Antioxidants (Basel) ; 12(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-38001815

RESUMEN

Leptin is critically compromised in the major common forms of obesity. Skeletal muscle is the main effector tissue for energy modification that occurs as a result of the effect of endocrine axes, such as leptin signaling. Our study was carried out using skeletal muscle from a leptin-deficient animal model, in order to ascertain the importance of this hormone and to identify the major skeletal muscle mechanisms affected. We also examined the therapeutic role of melatonin against leptin-induced muscle wasting. Here, we report that leptin deficiency stimulates fatty acid ß-oxidation, which results in mitochondrial uncoupling and the suppression of mitochondrial oxidative damage; however, it increases cytosolic oxidative damage. Thus, different nutrient-sensing pathways are disrupted, impairing proteostasis and promoting lipid anabolism, which induces myofiber degeneration and drives oxidative type I fiber conversion. Melatonin treatment plays a significant role in reducing cellular oxidative damage and regulating energy homeostasis and fuel utilization. Melatonin is able to improve both glucose and mitochondrial metabolism and partially restore proteostasis. Taken together, our study demonstrates melatonin to be a decisive mitochondrial function-fate regulator in skeletal muscle, with implications for resembling physiological energy requirements and targeting glycolytic type II fiber recovery.

5.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902233

RESUMEN

There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.


Asunto(s)
Melatonina , Células-Madre Neurales , Melatonina/farmacología , Hipocampo , Neurogénesis , Neuronas
6.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499366

RESUMEN

In a world in which life expectancy is increasing, understanding and promoting healthy aging becomes a contemporary demand. In the elderly, a sterile, chronic and low-grade systemic inflammation known as "inflammaging" is linked with many age-associated diseases. Considering sarcopenia as a loss of strength and mass of skeletal muscle related to aging, correlations between these two terms have been proposed. Better knowledge of the immune system players in skeletal muscle would help to elucidate their implications in sarcopenia. Characterizing the activators of damage sensors and the downstream effectors explains the inference with skeletal muscle performance. Sarcopenia has also been linked to chronic diseases such as diabetes, metabolic syndrome and obesity. Implications of inflammatory signals from these diseases negatively affect skeletal muscle. Autophagic mechanisms are closely related with the inflammasome, as autophagy eliminates stress signaling sent by damage organelles, but also acts with an immunomodulatory function affecting immune cells and cytokine release. The use of melatonin, an antioxidant, ROS scavenger and immune and autophagy modulator, or senotherapeutic compounds targeting senescent cells could represent strategies to counteract inflammation. This review aims to present the many factors regulating skeletal muscle inflammaging and their major implications in order to understand the molecular mechanisms involved in sarcopenia.


Asunto(s)
Sarcopenia , Humanos , Anciano , Sarcopenia/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento/fisiología , Inflamación/patología , Obesidad/metabolismo
7.
Molecules ; 27(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080336

RESUMEN

Adult hippocampal neurogenesis is altered during aging and under different neuropsychiatric and neurodegenerative diseases. Melatonin shows neurogenic and neuroprotective properties during aging and neuropathological conditions. In this study, we evaluated the effects of chronic treatment with melatonin on different markers of neurodegeneration and hippocampal neurogenesis using immunohistochemistry in the aged and neurodegenerative brains of SAMP8 mice, which is an animal model of accelerated senescence that mimics aging-related Alzheimer's pathology. Neurodegenerative processes observed in the brains of aged SAMP8 mice at 10 months of age include the presence of damaged neurons, disorganization in the layers of the brain cortex, alterations in neural processes and the length of neuronal prolongations and ß-amyloid accumulation in the cortex and hippocampus. This neurodegeneration may be associated with neurogenic responses in the hippocampal dentate gyrus of these mice, since we observed a neurogenic niche of neural stem and progenitor/precursors cells in the hippocampus of SAMP8 mice. However, hippocampal neurogenesis seems to be compromised due to alterations in the cell survival, migration and/or neuronal maturation of neural precursor cells due to the neurodegeneration levels in these mice. Chronic treatment with melatonin for 9 months decreased these neurodegenerative processes and the neurodegeneration-induced neurogenic response. Noticeably, melatonin also induced recovery in the functionality of adult hippocampal neurogenesis in aged SAMP8 mice.


Asunto(s)
Melatonina , Células-Madre Neurales , Envejecimiento , Animales , Hipocampo , Melatonina/farmacología , Ratones , Neurogénesis , Neuronas
8.
J Cachexia Sarcopenia Muscle ; 13(2): 919-931, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35178901

RESUMEN

BACKGROUND: The diversity between the muscle cellular interactome of dependent and independent elderly people is based on the interrelationships established between different cellular mechanisms, and alteration of this balance modulates cellular activity in muscle tissue with important functional implications. METHODS: Thirty patients (85 ± 8 years old, 23% female) scheduled to undergo hip fracture surgery participated in this study. During the surgical procedures, skeletal muscle tissue was obtained from the Vastus lateralis. Two groups of participants were studied based on their Barthel index: 15 functional-independent individuals (100-90) and 15 severely functional-dependent individuals (40-0). The expression of proteins from the most important cellular mechanisms was studied by western blot. RESULTS: Compared with independent elderly patients, dependent elderly showed an abrupt decrease in the capacity of protein synthesis; this decrease was only partially compensated for at the response to unfolded or misfolded proteins (UPR) level due to the increase in IRE1 (P < 0.001) and ATF6 (P < 0.05), which block autophagy, an essential mechanism for cell survival, by decreasing the expression of Beclin-1, LC3, and p62 (P < 0.001) and the antioxidant response. This lead to increased oxidative damage to lipids (P < 0.001) and that damage was directly associated with the mitochondrial impairment induced by the significant decreases in the I, III, IV, and V mitochondrial complexes (P < 0.01), which drastically reduced the energy capacity of the cell. The essential cellular mechanisms were generally impaired and the triggering of apoptosis was induced, as shown by the significantly elevated levels of most proapoptotic proteins (P < 0.05) and caspase-3/7 (P < 0.001) in dependents. The death of highly damaged cells is not detrimental to organs as long as the regenerative capacity remains unaltered, but in the dependent patients, this ability was also significantly altered, which was revealed by the reduction in the myogenic regulatory factors and satellite cell marker (P < 0.001), and the increase in myostatin (P < 0.01). Due to the severely disturbed cell interactome, the muscle contractile capacity showed significant damage. CONCLUSIONS: Functionally dependent patients exhibited severe alterations in their cellular interactome at the muscle level. Cell apoptosis was caused by a decrease in successful protein synthesis, to which the cellular control systems did not respond adequately; autophagy was simultaneously blocked, the mitochondrion malfunctioned, and as the essential recovery mechanisms failed, these cells could not be replaced, resulting in the muscle being condemned to a loss of mass and functionality.


Asunto(s)
Sarcopenia , Anciano , Anciano de 80 o más Años , Envejecimiento , Autofagia , Femenino , Humanos , Masculino , Músculo Esquelético/patología , Estrés Oxidativo , Sarcopenia/patología
9.
Front Cell Dev Biol ; 9: 792825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926470

RESUMEN

Biomarkers are essential tools for accurate diagnosis and effective prevention, but their validation is a pending challenge that limits their usefulness, even more so with constructs as complex as frailty. Sarcopenia shares multiple mechanisms with frailty which makes it a strong candidate to provide robust frailty biomarkers. Based on this premise, we studied the temporal evolution of cellular interactome in frailty, from independent patients to dependent ones. Overweight is a recognized cause of frailty in aging, so we studied the altered mechanisms in overweight independent elderly and evaluated their aggravation in dependent elderly. This evidence of the evolution of previously altered mechanisms would significantly support their role as real biomarkers of frailty. The results showed a preponderant role of autophagy in interactome control at both different functional points, modulating other essential mechanisms in the cell, such as mitochondrial capacity or oxidative stress. Thus, the overweight provoked in the muscle of the elderly an overload of autophagy that kept cell survival in apparently healthy individuals. This excessive and permanent autophagic effort did not seem to be able to be maintained over time. Indeed, in dependent elderly, the muscle showed a total autophagic inactivity, with devastating effects on the survival of the cell, which showed clear signs of apoptosis, and reduced functional capacity. The frail elderly are in a situation of weakness that is a precursor of dependence that can still be prevented if detection is early. Hence biomarkers are essential in this context.

10.
Cells ; 10(10)2021 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-34685764

RESUMEN

The 18-kDa translocator protein (TSPO) is a key mitochondrial target by which different TSPO ligands exert neuroprotective effects. We assayed the neurogenic potential of TSPO to induce the neuronal differentiation of pluripotent P19 stem cells in vitro. We studied changes in cell morphology, cell proliferation, cell death, the cell cycle, mitochondrial functionality, and the levels of pluripotency and neurogenesis of P19 stem cells treated with the TSPO ligand, PK 11195, in comparison to differentiation induced by retinoid acid (RA) and undifferentiated P19 stem cells. We observed that PK 11195 was able to activate the differentiation of P19 stem cells by promoting the development of embryoid bodies. PK 11195 also induced changes in the cell cycle, decreased cell proliferation, and activated cell death. Mitochondrial metabolism was also enhanced by PK 11195, thus increasing the levels of reactive oxygen species, Ca2+, and ATP as well as the mitochondrial membrane potential. Markers of pluripotency and neurogenesis were also altered during the cell differentiation process, as PK 11195 induced the differentiation of P19 stem cells with a high predisposition toward a neuronal linage, compared to cell differentiation induced by RA. Thus, we suggest a relevant neurogenic potential of TSPO along with broad therapeutic implications.


Asunto(s)
Neurogénesis , Células Madre Pluripotentes/metabolismo , Receptores de GABA/metabolismo , Animales , Biomarcadores/metabolismo , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Isoquinolinas/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Peso Molecular , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Tretinoina/farmacología
11.
Methods Mol Biol ; 2310: 161-178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34096003

RESUMEN

Mitochondria play a key role in cell death and its regulation. The permeabilization of the outer mitochondrial membrane, which is mainly controlled by proteins of the BCL-2 family, is a key event that can be directly induced by different signaling pathways, including p53-mediated, and results in the release of proapoptotic factors to the cytosol, such as cytochrome c, second mitochondria-derived activator of caspases/direct inhibitor-of-apoptosis (IAP) binding protein with low pI (SMAC/Diablo), Omi serine protease (Omi/HtrA2), apoptosis-inducing factor (AIF), or endonuclease G (Endo-G). Hence, the determination of subcellular localization of these proteins is extremely important to predict cell fate and elucidate the specific mechanism of apoptosis. Here we describe experimental protocols that can be used to study the subcellular location of different proapoptotic proteins to be used in basic cell biology and toxicology studies.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Western Blotting , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Mitocondrias/metabolismo , Animales , Fraccionamiento Celular , Línea Celular , Centrifugación , Humanos , Microscopía Fluorescente , Mitocondrias/patología , Transporte de Proteínas
12.
Autophagy ; 16(2): 313-333, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30990357

RESUMEN

Given the relatively long life of stem cells (SCs), efficient mechanisms of quality control to balance cell survival and resistance to external and internal stress are required. Our objective was to test the relevance of cell quality control mechanisms for SCs maintenance, differentiation and resistance to cell death. We compared cell quality control in P19 stem cells (P19SCs) before and after differentiation (P19dCs). Differentiation of P19SCs resulted in alterations in parameters involved in cell survival and protein homeostasis, including the redox system, cardiolipin and lipid profiles, unfolded protein response, ubiquitin-proteasome and lysosomal systems, and signaling pathways controlling cell growth. In addition, P19SCs pluripotency was correlated with stronger antioxidant protection, modulation of apoptosis, and activation of macroautophagy, which all contributed to preserve SCs quality by increasing the threshold for cell death activation. Furthermore, our findings identify critical roles for the PI3K-AKT-MTOR pathway, as well as autophagic flux and apoptosis regulation in the maintenance of P19SCs pluripotency and differentiation potential.Abbreviations: 3-MA: 3-methyladenine; AKT/protein kinase B: thymoma viral proto-oncogene; AKT1: thymoma viral proto-oncogene 1; ATG: AuTophaGy-related; ATF6: activating transcription factor 6; BAX: BCL2-associated X protein; BBC3/PUMA: BCL2 binding component 3; BCL2: B cell leukemia/lymphoma 2; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CASP8: caspase 8; CASP9: caspase 9; CL: cardiolipin; CTSB: cathepsin B; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DNM1L/DRP1: dynamin 1-like; DRAM1: DNA-damage regulated autophagy modulator 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2, subunit alpha; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; ESCs: embryonic stem cells; KRT8/TROMA-1: cytokeratin 8; LAMP2A: lysosomal-associated membrane protein 2A; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NANOG: Nanog homeobox; NAO: 10-N-nonyl acridine orange; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; OPA1: OPA1, mitochondrial dynamin like GTPase; P19dCs: P19 differentiated cells; P19SCs: P19 stem cells; POU5F1/OCT4: POU domain, class 5, transcription factor 1; PtdIns3K: phosphatidylinositol 3-kinase; RA: retinoic acid; ROS: reactive oxygen species; RPS6KB1/p70S6K: ribosomal protein S6 kinase, polypeptide 1; SCs: stem cells; SOD: superoxide dismutase; SHC1-1/p66SHC: src homology 2 domain-containing transforming protein C1, 66 kDa isoform; SOX2: SRY (sex determining region Y)-box 2; SQSTM1/p62: sequestosome 1; SPTAN1/αII-spectrin: spectrin alpha, non-erythrocytic 1; TOMM20: translocase of outer mitochondrial membrane 20; TRP53/p53: transformation related protein 53; TUBB3/betaIII-tubulin: tubulin, beta 3 class III; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.


Asunto(s)
Diferenciación Celular , Células Madre Neoplásicas/patología , Factor de Transcripción Activador 6/metabolismo , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Cardiolipinas/metabolismo , Inhibidores de Caspasas/farmacología , Compartimento Celular , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Endosomas/metabolismo , Endosomas/ultraestructura , Factor 2 Eucariótico de Iniciación/metabolismo , Lípidos/química , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/ultraestructura , Fosfatidilinositol 3-Quinasas/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
13.
Free Radic Biol Med ; 138: 1-9, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31055131

RESUMEN

BACKGROUND: Correctly distinguishing preeclampsia (PE), gestational hypertension (GH), and intrauterine growth retardation (IUGR) is a challenge for clinicians due to existing similarities. In our previous study, we showed that serum strontium (Sr) levels were elevated in preeclamptic women compared to healthy and GH pregnant women at the end of pregnancy. The main aim of this study was to evaluate Sr and oxidative stress in PE at the time of symptoms onset and before and compare it with IUGR/GH. METHODS: Samples collected at symptoms onset included 77 preeclamptic women and 72 women diagnosed with IUGR/GH divided into two groups according to the gestational extraction week (<34 and ≥ 34). Fifteen patients were also serialized until delivery. Samples collected before symptoms onset included 140 women who developed early-onset PE (E-PE, n = 9), late-onset PE (L-PE, n = 13), IUGR (n = 9), GH (n = 32) and no pathologies (n = 77). Strontium, placental growth factor (PlGF), soluble fms-like tyrosine kinase 1 (sFlt-1), uric acid (UA), creatinine, lipid peroxidation, and total antioxidant activity (TAA) were measured. RESULTS: Mean Sr, sFlt-1/PIGF ratio, UA, and lipid peroxidation/TAA ratio levels were significantly higher (p = 0.002, <0.0001, <0.0001 and = 0.03, respectively) and estimated glomerular filtration rate (eGFR) and TAA significantly lower (p = 0.0008 and < 0.0001, respectively) in E-PE vs other pathologies when gestational extraction week was <34. There was a significant correlation between Sr and eGFR (r = 0.43, p = 0.02), sFlt-1/PIGF ratio (r = 0.56, p = 0.002), TAA and gestational week of sampling (r = -0.45, p = 0.02) and UA (r = -0.82, p < 0.0001) in the E-PE serial samples. No differences were found in Sr levels before symptoms onset. CONCLUSION: Serum Sr concentration and oxidative status are increased in E-PE when compared to other pathologies at the time of symptoms onset. More studies are needed to elucidate the causes of Sr levels elevation and its role in the pathophysiology of PE.


Asunto(s)
Retardo del Crecimiento Fetal/diagnóstico , Hipertensión Inducida en el Embarazo/diagnóstico , Estrés Oxidativo , Preeclampsia/diagnóstico , Estroncio/sangre , Adulto , Edad de Inicio , Biomarcadores/sangre , Creatinina/sangre , Diagnóstico Diferencial , Femenino , Retardo del Crecimiento Fetal/sangre , Edad Gestacional , Tasa de Filtración Glomerular , Humanos , Hipertensión Inducida en el Embarazo/sangre , Peroxidación de Lípido , Factor de Crecimiento Placentario/sangre , Preeclampsia/sangre , Embarazo , Ácido Úrico/sangre , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre
14.
Aging Dis ; 10(2): 217-230, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31011474

RESUMEN

Aging is characterized by a progressive loss of skeletal muscle mass and function (sarcopenia). Obesity exacerbates age-related decline and lead to frailty. Skeletal muscle fat infiltration increases with aging and seems to be crucial for the progression of sarcopenia. Additionally, skeletal muscle plasticity modulates metabolic adaptation to different pathophysiological situations. Thus, cellular bioenergetics and mitochondrial profile were studied in the skeletal muscle of overweight aged people without reaching obesity to prevent this extreme situation. Overweight aged muscle lacked ATP production, as indicated by defects in the phosphagen system, glycolysis and especially mostly by oxidative phosphorylation metabolic pathway. Overweight subjects exhibited an inhibition of mitophagy that was linked to an increase in mitochondrial biogenesis that underlies the accumulation of dysfunctional mitochondria and encourages the onset of sarcopenia. As a strategy to maintain cellular homeostasis, overweight subjects experienced a metabolic switch from oxidative to lactic acid fermentation metabolism, which allows continued ATP production under mitochondrial dysfunction, but without reaching physiological aged basal levels. This ATP depletion induced early signs of impaired contractile function and a decline in skeletal muscle structural integrity, evidenced by lower levels of filamin C. Our findings reveal the main effector pathways at an early stage of obesity and highlight the importance of mitochondrial metabolism in overweight and obese individuals. Exploiting mitochondrial profiles for therapeutic purposes in humans is an ambitious strategy for treating muscle impairment diseases.

15.
J Pineal Res ; 66(1): e12534, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30329173

RESUMEN

There are several pathologies, syndromes, and physiological processes in which autophagy is involved. This process of self-digestion that cells trigger as a survival mechanism is complex and tightly regulated, according to the homeostatic conditions of the organ. However, in all cases, its relationship with oxidative stress alterations is evident, following a pathway that suggests endoplasmic reticulum stress and/or mitochondrial changes. There is accumulating evidence of the beneficial role that melatonin has in the regulation and restoration of damaged autophagic processes. In this review, we focus on major physiological changes such as aging and essential pathologies including cancer, neurodegenerative diseases, viral infections and obesity, and document the essential role of melatonin in the regulation of autophagy in each of these different situations.


Asunto(s)
Autofagia/efectos de los fármacos , Melatonina/farmacología , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos
16.
Mol Neurobiol ; 55(10): 7973-7986, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29492847

RESUMEN

Although numerous studies have demonstrated the harmful effect of excessive fructose consumption at the systemic level, there is little information on its effects in the central nervous system. The purpose of the present work was to study the cellular alterations related to oxidative stress and protein quality control systems induced by a high-fructose diet in the brain of Syrian hamsters and their possible attenuation by exogenous melatonin. High-fructose intake induced type II diabetes together with oxidative damage, led to alterations of the unfolded protein response by activating the eIF2α branch, and impaired the macroautophagic machinery in the brain, favoring the accumulation of aggregates labeled for selective degradation and neurodegeneration markers such as ß-amyloid (1-42), tau-p-S199, and tau-p-S404. Melatonin attenuated the manifestation of type II diabetes and reduced oxidative stress, deactivated eIF2α, and decreased tau-p-S404 levels in the brain of animals fed a high-fructose diet.


Asunto(s)
Encéfalo/metabolismo , Fructosa/administración & dosificación , Melatonina/farmacología , Proteínas/metabolismo , Animales , Biomarcadores/metabolismo , Glucemia/metabolismo , Encéfalo/patología , Cricetinae , Dieta , Homeostasis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Lípidos/química , Masculino , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
17.
J Trace Elem Med Biol ; 47: 37-44, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29544806

RESUMEN

BACKGROUND: Preeclampsia (PE) is considered a specific vascular disease in which endothelial dysfunction may be the crucial factor of its pathogenesis. It has been suggested that strontium (Sr) may play a role in the pathophysiology of PE. Our group established in a previous study the serum levels of Sr in healthy pregnancies, and the main aim of the present study was to evaluate Sr concentrations and oxidative status in preeclamptic women. METHODS: The study population included women with early-onset PE (E-PE, n = 39), late-onset PE (L-PE, n = 67) and serial samples from a subset of preeclamptic women (PE-ss, n = 20). The control group included women with gestational hypertension (GH, n = 56) and healthy pregnancies (samples collected in the 1st (n = 50), 2nd (n = 51) and 3rd trimesters (n = 53)). Strontium, calcium (Ca), uric acid (UA), placental growth factor (PlGF), soluble fms-like tyrosine kinase 1 (sFlt-1), N-terminal pro-brain natriuretic peptide (NT-proBNP), lipid peroxidation and total antioxidant activity (TAA) were measured in these samples. RESULTS: Mean Sr levels were significantly higher in PE than in control groups (p ≤ 0.0001). Calcium values were found to be significantly lower in E-PE compared to control groups (p = 0.03). Higher levels of NT-proBNP were found in PE vs. control groups (p < 0.001). sFlt-1/PlGF ratio was higher in E-PE compared to L-PE and GH (p < 0.001). Uric acid levels in PE were significantly higher than in control groups (p < 0.0001). There was a strong positive correlation between UA and Sr in the E-PE serial samples (r = 0.80, p < 0.0001). Lipid peroxidation and lipid peroxidation/TAA ratios were found to be higher in PE, with lower values of TAA. CONCLUSION: The higher levels of Sr and the alterations of redox status found in preeclamptic women, along with the strong correlation between UA and Sr suggest that this element may be involved in the pathogenesis of PE.


Asunto(s)
Preeclampsia/sangre , Estroncio/sangre , Adulto , Biomarcadores/sangre , Calcio/sangre , Estudios de Casos y Controles , Femenino , Edad Gestacional , Humanos , Hipertensión Inducida en el Embarazo/sangre , Proteínas de la Membrana/sangre , Péptido Natriurético Encefálico/sangre , Estrés Oxidativo , Fragmentos de Péptidos/sangre , Preeclampsia/etiología , Embarazo , Ácido Úrico/sangre , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre
18.
Eur J Clin Invest ; 48(4)2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29383696

RESUMEN

BACKGROUND: Expression of TRAP1, a member of the HSP90 chaperone family, has been implicated in tumour protective effects, based on its differential mitochondrial localization and function. DESIGN: This work was designed to provide new insights into the pathways involved in TRAP1-provided cytoprotection on NSCLC. For this, TRAP1-depleted A549 human NSCLC cells and MRC-5 normal lung fibroblasts were produced using a siRNA approach and main cellular quality control mechanisms were investigated. RESULTS: TRAP1-depleted A549 cells displayed decreased cell viability likely due to impaired mitochondrial function including decreased ATP/AMP ratio, oxygen consumption and membrane potential, as well as increased apoptotic indicators. Furthermore, the negative impact of TRAP1 depletion on mitochondrial function was not observed in normal MRC-5 lung cells, which might be due to the differential intracellular localization of the chaperone in tumour versus normal cells. Additionally, A549 TRAP1-depleted cells showed increased autophagic flux. Functionally, autophagy inhibition resulted in decreased cell viability in both TRAP1-expressing and TRAP1-depleted tumour cells with minor effects on MRC-5 cells. Conversely, autophagy stimulation decreased cell viability of both A549 and MRC-5 TRAP1-expressing cells while in A549 TRAP1-depleted cells, increased autophagy augmented viability. CONCLUSIONS: Our results show that even though TRAP1 depletion affects both normal MRC-5 and tumour A549 cell proliferation, inhibition of autophagy per se led to a decrease in tumour cell mass, while having a reduced effect on the normal cell line. The strategy of targeting TRAP1 in NSCLC shows future potential therapeutic applications.


Asunto(s)
Autofagia/fisiología , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas HSP90 de Choque Térmico/fisiología , Neoplasias Pulmonares/patología , Apoptosis/fisiología , Muerte Celular/fisiología , Supervivencia Celular , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/deficiencia , Humanos , Mitocondrias/patología , Enfermedades Mitocondriales/patología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Transfección , Células Tumorales Cultivadas
19.
J Trace Elem Med Biol ; 45: 57-63, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29173484

RESUMEN

BACKGROUND: Pregnancy brings about metabolic and oxidative changes that involve various trace elements and oxidative stress. Strontium (Sr) is a trace element scarcely studied in this context, although it has been suggested that it may play a role in the pathophysiology of preeclampsia. The main aim of this study was to evaluate Sr concentrations and oxidative status in normal pregnancy. METHODS: The study population included non-pregnant women (n=31), healthy pregnant women in the first (n=50), second (n=51) and third (n=53) trimesters of gestation, and women in postpartum period (n=31). Additionally, samples from another twenty pregnant women were obtained in the three trimesters. Strontium, copper, selenium and zinc were measured by inductively coupled plasma-mass spectrometry. Calcium (Ca), uric acid (UA), lipid peroxidation and total antioxidant activity (TAA) were measured by spectrophotometric assays. RESULTS: Strontium remained unchanged until the third trimester of pregnancy, in which significantly higher levels were found (p=0.001). The other elements showed diverse trends during pregnancy. Uric acid levels were significantly different in all groups (p<0.001), increasing gradually as the pregnancy progresses. In serial samples, there was a statistically significant positive correlation between Sr and gestational week of sampling (r=0.31, p=0.01), UA (r=0.40, p=0.001) and lipid peroxidation/TAA ratio (r=0.38, p=0.0002). Additionally, Sr correlated negatively with TAA (r=-0.40, p=0.0001). CONCLUSION: Strontium seems to play a physiological role in the oxidative status of the human organism. Further studies involving Sr and pathologies of pregnancy are warranted.


Asunto(s)
Estrés Oxidativo/fisiología , Estroncio/sangre , Adulto , Cobre/sangre , Femenino , Humanos , Embarazo , Trimestres del Embarazo , Selenio/sangre , Espectrofotometría , Oligoelementos/sangre , Zinc/sangre
20.
Mol Neurobiol ; 55(7): 5830-5846, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29086246

RESUMEN

Obesity is a health problem caused by a diet rich in energy and the sedentary lifestyle of modern societies. A leptin deficiency is one of the worst causes of obesity, since it results in morbid obesity, a chronic disease without a cure. Leptin is an adipokine secreted in a manner dependent on the circadian rhythm that ultimately reduces food intake. We studied cellular alterations in brain of leptin-deficient obese animals and tested whether these alterations are reflected in abnormal behaviors. Obesity induced increases in oxidative stress and the unfolded protein response caused by endoplasmic reticulum stress. However, the subsequent signaling cascade was disrupted, blocking possible systemic improvements and increasing the production of misfolded proteins that trigger autophagy. Up-regulated autophagy was not indefinitely maintained and misfolded proteins accumulated in obese animals, which led to aggresome formation. Finally, neurodegenerative markers together with anxiety and stress-induced behaviors were observed in leptin-deficient mice. As oxidative stress has an essential role in the development of these harmful effects of obesity, melatonin, a powerful antioxidant, might counteract these effects on the brain. Following treatment with melatonin, the animals' antioxidant defenses were improved and misfolded protein, proteasome activity, and autophagy decreased. Aggresome formation was reduced due to the reduction in the levels of misfolded proteins and the reduction in tubulin expression, a key element in aggresome development. The levels of neurodegenerative markers were reduced and the behaviors recovered. The data support the use of melatonin in therapeutic interventions to reduce brain damage induced by leptin deficiency-dependent obesity.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/patología , Melatonina/uso terapéutico , Obesidad/tratamiento farmacológico , Animales , Autofagia/efectos de los fármacos , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Citocinas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Leptina/deficiencia , Leptina/metabolismo , Masculino , Melatonina/farmacología , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Obesidad/patología , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...